Evaluación de las propiedades mecánicas de ladrillos elaborados con residuos de vidrio y plástico. Análisis de las emisiones de dióxido de carbono

Faber Sneider Cardona Howard, Luis Alberto Rengifo Rojas, Juan Felipe Guarín Martínez, Daniel Guillermo Mazo Castro, Oscar Felipe Arbeláez Pérez

Resumen


El uso de desechos no biodegradables como el vidrio y el plástico en la industria de la construcción ha recibido atención significativa para un medio ambiente más limpio. Este trabajo presenta un estudio de las propiedades mecánicas de ladrillos que contienen agregados, vidrio y pellets de tereftalato de polietileno. Los ladrillos se fundieron  a 240 °C durante 3 horas y se enfriaron por convección natural. Los resultados mostraron que un aumento en el contenido de vidrio y agregados genera un incremento en la densidad, que es superior en las muestras con mayor contenido de agregados. La misma tendencia se observó en la resistencia a la compresión: la muestra con mayor contenido de agregados mostró una mejora del 243 % comparada con la referencia (preparada solo con plástico). Los resultados indicaron que las emisiones de dióxido de carbono disminuyeron alrededor del 30 % en las muestras preparadas, en comparación con los ladrillos tradicionales. Se espera que el uso de residuos de plástico y vidrio en la producción de ladrillos se convierta en una ruta para su valorización.


Palabras clave


Residuos de vidrio; Residuos plásticos; Ladrillos no cocidos; Huella de carbono; Emisión de gases; Propiedades mecánicas; Materiales de construcción; Resistencia a compresión; Construcción sostenible; Reciclaje.

Texto completo:

PDF

Referencias


J. Hong, G. Q. Shen, Y. Feng, W. S. T. Lau, and C. Mao, “Greenhouse gas emissions during the construction phase of a building: A case study in China”, Journal of Cleaner Production, vol. 103, pp. 249–259, 2015. http://ira.lib.polyu.edu.hk/bitstream/10397/36019/1/Hong_Jingke_2015.pdf

A. Al-Fakih, B. S. Mohammed, M. S. Liew, and E. Nikbakht, “Incorporation of waste materials in the manufacture of masonry bricks: An update review”, Journal of Building Engineering, vol. 21, pp. 37–54, 2019, doi: https://doi.org/10.1016/j.jobe.2018.09.023

L. Zhang, “Production of bricks from waste materials - A review”, Construction and Building Materials, vol. 47, pp. 643–655, 2013, doi: https://doi.org/10.1016/j.conbuildmat.2013.05.043

A. L. Murmu and A. Patel, “Towards sustainable bricks production: An overview”, Construction and Building Materials, vol. 165, pp. 112–125, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.01.038

M. Sutcu, E. Erdogmus, O. Gencel, A. Gholampour, E. Atan, and T. Ozbakkaloglu, “Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production”, Journal of Cleaner Production, vol. 233, pp. 753–764, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.06.017

S. Elavarasan, A. K. Priya, and V. K. Kumar, “Manufacturing fired clay brick using fly ash and M À Sand”, Materials Today Proceedings, 2020, doi: ttps://doi.org/10.1016/j.matpr.2020.06.042

Y. Chen, Y. Zhang, T. Chen, Y. Zhao, and S. Bao, “Preparation of eco-friendly construction bricks from hematite tailings,” Constr. Build. Mater., vol. 25, no. 4, pp. 2107–2111, April 2011.

doi:https://doi.org/10.1016/j.conbuildmat.2010.11.025

P. Indhiradevi, P. Manikandan, K. Rajkumar, and S. Logeswaran, “A comparative study on usage of cowdung ash and wood ash as partial replacement in flyash brick”, Materials Today Proceedings, 2020, doi: https://doi.org/10.1016/j.matpr.2020.06.355

M. Sutcu, H. Alptekin, E. Erdogmus, Y. Er, and O. Gencel, “Characteristics of fired clay bricks with waste marble powder addition as building materials”, Constr. Build. Mater., vol. 82, pp. 1–8, 2015, doi: 10.1016/J.CONBUILDMAT.2015.02.055

O. Gencel, “Characteristics of fired clay bricks with pumice additive”, Energy and Buildings, vol. 102, pp. 217–224, 2015, doi: https://doi.org/10.1016/j.enbuild.2015.05.031

A. Seco, J. Omer, S. Marcelino, S. Espuelas, and E. Prieto, “Sustainable unfired bricks manufacturing from construction and demolition wastes”, Construction and Building Materials, vol. 167, pp. 154–165, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.02.026

S. Neves, C. Maurício, and F. Vieira, “On the production of fired clay bricks from waste materials: A critical update”, Construction and Building Materials, vol. 68, pp. 599–610, 2014, doi: https://doi.org/10.1016/j.conbuildmat.2014.07.006

P. Guo, W. Meng, H. Nassif, H. Gou, and Y. Bao, “New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure”, Construction and Building Materials, vol. 257, p. 119579, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.119579

I. Almeshal, B. A. Tayeh, R. Alyousef, H. Alabduljabbar, and A. M. Mohamed, “Eco-friendly concrete containing recycled plastic as partial replacement for sand”, Journal of Materials Research and Technology, vol. 9, no. 3, pp. 4631–4643, 2020, doi: 10.1016/j.jmrt.2020.02.090

J. O. Akinyele, U. T. Igba, and B. G. Adigun, “Effect of waste PET on the structural properties of burnt bricks”, Scientific African, vol. 7, p. e00301, 2020, doi: https://doi.org/10.1016/j.sciaf.2020.e00301

J. Roberts. “How to design masonry structures using Eurocode 6”. https://www.brick.org.uk/admin/resources/d-eurocode-6-masonry-introduction.pdf (accesed Aug. 20, 2020).

Instituto Colombiano de Normas Técnicas y Certificación, NTC 4205. Unidades de mampostería de arcilla cocida. Ladrillos y bloques cerámicos, Ciudad, Colombia: editor, 2000.

J. O. Akinyele, U. T. Igba, T. O. Ayorinde, and P. O. Jimoh, “Structural efficiency of burnt clay bricks containing waste crushed glass and polypropylene granules”, Case Studies in Construction Materials, vol. 13, p. e00404, December 2020, doi: https://doi.org/10.1016/j.cscm.2020.e00404

A. Kumi-Larbi, D. Yunana, P. Kamsouloum, M. Webster, D. C. Wilson, and C. Cheeseman, “Recycling waste plastics in developing countries: Use of low-density polyethylene water sachets to form plastic bonded sand blocks”, Waste Management, vol. 80, pp. 112–118, 2018, doi: https://doi.org/10.1016/j.wasman.2018.09.003

G. Syngros, C. A. Balaras, and D. G. Koubogiannis, “Embodied CO2 Emissions in Building Construction Materials of Hellenic Dwellings”, Procedia Environmental Sciences, vol. 38, pp. 500–508, 2017, doi: https://doi.org/10.1016/j.proenv.2017.03.113

M. Dabaieh, J. Heinonen, D. El-Mahdy, and D. M. Hassan, “A comparative study of life cycle carbon emissions and embodied energy between sun-dried bricks and fired clay bricks”, Journal Cleaner Production, vol. 275, pp. 114, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.122998

W. Song, J. Yi, H. Wu, X. He, Q. Song, and J. Yin, “Effect of carbon fiber on mechanical properties and dimensional stability of concrete incorporated with granulated-blast furnace slag”, Journal Cleaner Production, vol. 238, pp. 1-11, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.117819

E. Crossin, “The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute”, Journal of Cleaner Production, vol. 95, pp. 101–108, 2015, doi: https://doi.org/10.1016/j.jclepro.2015.02.082

D. J. Flower and J. G. Sanjayan, “Green house gas emissions due to concrete manufacture”, The International Journal of Life Cycle Assessment, vol. 12, pp. 282–288, 2007, doi: https://doi.org/10.1065/lca2007.05.327

P. Van den Heede, E. Gruyaert, N. Robeyst, and N. De Belie, “Life Cycle Assessment of a Column Supported Isostatic Beam in High-Volume Fly Ash Concrete (Hvfa Concrete),” presented at the 2nd Int. Symp. Serv. Life Des. Infrastruct., Delft, The Netherlands, Oct. 4-6, 2010, pp. 437–444, https://biblio.ugent.be/publication/1266046

U. Javed, R. A. Khushnood, S. A. Memon, F. E. Jalal, and M. S. Zafar, “Sustainable incorporation of lime-bentonite clay composite for production of ecofriendly bricks”, Journal Cleaner Production, vol. 263, p. 121469, August 2020, doi: https://doi.org/10.1016/j.jclepro.2020.121469

D. A. Ramos Huarachi, G. Gonçalves, A. C. de Francisco, M. H. G. Canteri, and C. M. Piekarski, “Life cycle assessment of traditional and alternative bricks: A review,” Environmental Impact Assessment Review, vol. 80, 2019, p. 106335, April 2020, doi: https://doi.org/10.1016/j.eiar.2019.106335

N. G. Kulkarni and A. B. Rao, “Carbon footprint of solid clay bricks fired in clamps of India”, Journal Cleaner Production, vol. 135, pp. 1396–1406, 2016, doi: https://doi.org/10.1016/j.jclepro.2016.06.152

J. Hong, G. Q. Shen, Y. Feng, W. S. T. Lau, and C. Mao, “Greenhouse gas emissions during the construction phase of a building: A case study in China,” Journal Cleaner Production, vol. 103, pp. 249–259, 2015, doi: https://doi.org/10.1016/j.jclepro.2014.11.023

A. Ukwatta, A. Mohajerani, S. Setunge, and N. Eshtiaghi, “A study of gas emissions during the firing process from bricks incorporating biosolids”, Waste Managment, vol. 74, pp. 413–426, 2018, doi: https://doi.org/10.1016/j.wasman.2018.01.006

UPME, “Factores de emisión del sistema interconectado nacional Colombia 2015”, upme 2015. http://www1.upme.gov.co/siame/Documents/Calculo-FE-del-SIN/Documento_calculo_del_FE_SIN_2015_dic_2016.pdf (consultado en Ago., 25, 2020).

J. P. Valencia Villegas, A. M. González Mesa, and O. F. Arbelaez Perez, “Evaluación de las propiedades mecánicas de concretos modificados con microesferas de vidrio y residuos de llantas”, Lámpsakos, no. 22, pp. 16–26, 2019, doi: https://doi.org/10.21501/21454086.3283

N. Tamanna, R. Tuladhar, and N. Sivakugan, “Performance of recycled waste glass sand as partial replacement of sand in concrete”, Construction Building Materials, vol. 239, p. 117804, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2019.117804

U. Rajarathnam, V. Athalye, S. Ragavan, S. Maithel, D. Lalchandani, S. Kumar, E. Baum, C. Weyant, and T. Bond, “Assessment of air pollutant emissions from brick kilns”, Atmospheric Environment, vol. 98, pp. 549–553, 2014, doi: https://doi.org/10.1016/j.atmosenv.2014.08.075

S. Iftikhar, K. Rashid, E. Ul Haq, I. Zafar, F. K. Alqahtani, and M. Iqbal Khan, “Synthesis and characterization of sustainable geopolymer green clay bricks: An alternative to burnt clay brick”, Construction and Building Materials, vol. 259, p. 119659, October 2020, doi: https://doi.org/10.1016/j.conbuildmat.2020.119659

L. F. Cabeza, C. Barreneche, L. Miró, J. M. Morera, E. Bartolí, and A. Inés Fernández, “Low carbon and low embodied energy materials in buildings: A review”, Renewable and Sustainable Energy Reviews, vol. 23, pp. 536–542, April 2013, doi: https://doi.org/10.1016/j.rser.2013.03.017




DOI: https://doi.org/10.21501/21454086.3725

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2021 Lámpsakos

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 
Directora/Editora - Ingrid Durley Torres Pardo Ph.D.

Correo: lampsakos@amigo.edu.co

ISSN (En línea): 2145-4086

DOI de la revista: https://doi.org/10.21501/issn.2145-4086

Universidad Católica Luis Amigó - Transversal 51A #67B 90. Medellín - Colombia.

 


 © 2021 Universidad Católica Luis Amigó

    

La revista y los textos individuales que en esta se divulgan están protegidos por las leyes de copyright y por los términos y condiciones de la Licencia Creative Commons Atribución-No Comercial-Sin Derivar 4.0 Internacional. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en https://www.funlam.edu.co/modules/fondoeditorial/

Derechos de autor. El autor o autores pueden tener derechos adicionales en sus artículos según lo establecido en la cesión por ellos firmada.

 

Se recomienda visualizar este contenido con los navegadores: Mozilla Firefox, Google Chrome, Safari.