Economía Computacional Basada en Agentes

Fabián Andrés Giraldo-Giraldo, Jonathan Gómez-Perdomo

Resumen


El artículo tiene como objetivo mostrar varios trabajos de investigación sobre un enfoque de simulación denominado Economía computacional basada en agentes, el cual rechaza las asunciones de los enfoques de estudio tradicionales que indican que la economía es un sistema cerrado que eventualmente logra un estado de equilibrio, en el que deben realizarse supuestos de racionalidad perfecta e inversiones homogéneas para que los modelos sean tratados analíticamente. En su lugar, ve a la economía como un sistema complejo, adaptativo y dinámico. Este nuevo enfoque permite usar la simulación basada en agentes para comprender que varios agentes económicos (firmas, grupos económicos) con sus propias reglas y objetivos, son capaces de interactuar entre sí y con su entorno para obtener comportamientos emergentes que no son explicables directamente de las propiedades de los agentes individuales.

Palabras clave


Economía; Evolución de Reglas; Modelamiento; Simulación;

Texto completo:

PDF PDF

Referencias


K. Dopfer, J. Foster, J Potts. “Micro-mesomacro”, Journal of Evolutionary Economics, no. 14, pp 263-279, 2004.

C.M. Macal, M.J. North, “Agent-based modeling and simulation”, Winter Simulation Conference, pp. 86-98, 2009.

L.R Izquierdo, J.M Galan, J.I Santos, “Modelado de sistemas complejos mediante simulación basada en agentes y mediante dinámica de sistemas”, Empiria. Revista de Metodología de Ciencias Sociales 1, no. 16, 85-112, 2008

H. Scholl, “Agent based and system dynamics modeling: A call for cross study and joint research”, Proceedings of the 34th Annual Hawaii International Conference on System Sciences (HICSS-34)-Volume 3, IEEE Computer Society, pp. 3003, 2001.

K. O. Faxen, “An evolutionary theory of economic change”, Journal of Economic Behavior & Organization 6, no. 1, 92-94, 1985.

M. Fontana, “Can neoclassical economics handle complexity? the fallacy of the oil spot dynamic”, Journal of Economic Behavior Organization 76 , no. 3, 584-596, 2010.

Richard R. Nelson and Sidney G. Winter, “Evolutionary theorizing in economics”, Journal of Economic Perspectives 16 , no. 2, 23-47, 2002.

Y. Chen, X. Su, J. Rao, H Xiong, “Agent-based microsimulation of economy from a complexity perspective”, 2000.

D.F. Batten, “Discovering artificial economics”, Westview Press, 2000.

L.Tesfatsion, “Agent-based computational economics”, ISU Economics Working Paper, 2003.

L. Tesfatsion, “Agent-based computational economics: A constructive approach to economic theory”, Handbook of Computational Economics, vol. 2, Elsevier, pp. 831-880, 2006.

L.Tesfatsion, “Agent-based computational economics: Modeling economies as complex adaptive systems”, Staf general research papers, Iowa State University, Department of Economics, 2008.

A. M. Bell, “Reinforcement learning rules in a repeated game”, Computational Economics, pp 89-110, 2001.

F. Luna, “Computable learning, neural networks and institutions”, Tech. report, 1996.

Dawid H, “Adaptive learning by genetic algorithms: Analytical results and applications to economic models”, 1st ed., Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

S.Chen, “Fundamental issues in the use of genetic programming in agent-based computational economics”, working paper, ai-econ research, 2001.

Y. Shun-kun, Y. Jia-hai, “Agent-based computational economics: methodology and its application in electricity market research”, Power Engineering Conference, 2005. IPEC 2005. The 7th International, 2005.

K. Dopfer, “The economic agent as rule maker and rule user: Homo sapiens oeconomicus”, Journal of Evolutionary Economics 14 (2004), no. 2, 177-195.

K. Dopfer, J. Foster, J. Potts, “Micro-mesomacro”, Journal of Evolutionary Economics 14 (2004), no. 3, 263-279.

K. Dopfer, J. Potts, “Evolutionary realism: a new ontology for economics”, Journal of Economic Methodology 11 (2004), no. 2, 195- 212.

J.S. Metcalfe, J. Foster, “Evolution and economic complexity”, 2004.

G Pappa, A. Freitas, “Automatically evolving rule induction algorithms tailored to the prediction of postsynaptic activity in proteins”, Intell. Data Anal. 13 , no. 2, pp. 243-259, 2009.

S Yew and C. Xin, “Multiple Choices and Reputation in Multiagent Interactions”, Evolutionary Computation, IEEE Transactions, 2007

Y. Yau and J. Teo, “An Empirical Comparison of Non-Adaptive, Adaptive and Self- Adaptive Co-evolution for Evolving Artificial Neural Network Game Players”. 2006 IEEE International Conference on Cybernetics and Intelligent Systems (CIS 2006), pp. 405-410, Bangkok, Thailand, 2006.

D. Rivero, J. Dorado, J. Rabunal, A. Pazos, “Generation and simplification of Artificial Neural Networks by means of Genetic Programming”, Neurocomputing, Brazilian Symposium on Neural Networks (SBRN2008), No. 73, Issues 16-18, pp. 3200-3223, 2010

I. Tsoulos, D. Gavrilis, E. Glavas, “Neural network construction and training using grammatical evolution”, Neurocomputing, Machine Learning for Signal Processing (MLSP 2006) / Life System Modelling, Simulation, and Bioinspired Computing (LSMS 2007). No 72, Issues 1-3, pp. 269-277, 2008

D. Clemens, “Agent-based simulation for research in economics”, Handbook on Information Technology in Finance , International Handbooks on Information Systems, Springer Berlin Heidelberg, pp. 421-442, 2008.

M. Melanie, “An Introduction to Genetic Algorithms (Complex Adaptive Systems)”, third printing ed., A Bradford Book, 1998.

A. Errity, “Evolving strategies for the prisoner’s dilemma”, July 2003.

N. Franken, A.P. Engelbrecht, “Particle swarm optimization approaches to coevolve strategies for the iterated prisoner’s dilemma”, Evolutionary Computation, IEEE Transactions on 9, 2005

N. Franken, A.P Engelbrecht, “Pso approaches to coevolve ipd strategies”, Evolutionary Computation, 2004.

F. Alkemade, “Evolutionary agent-based economics”, Technische Universiteit Eindhoven, 2004.

F Alkemade, H La Poutre, H Amman, “On social learning and robust evolutionary algorithm design in economic games”, Evolutionary Computation, 2005. The 2005 IEEE Congress on, No. 3, pp. 2445 -2452, sept. 2005.

T. Riechmann , “Learning in economics: Analysis and application of genetic algorithms”, Springer, 2001

R. Herbrich, M. Keilbach, T. Graepel, P. Bollmann-Sdorra, K. Obermayer, “Neural networks in economics: Background, applications and new developments”, in Advances in Computational Economics: Computational Techniques for Modelling Learning in Economics, Kluwer Academics, pp. 169-196, 1999.

C. In-Koo, “Bounded rationality, neural network and folk theorem in repeated games with discounting”, Economic Theory 4, pp. 935-957, 1994.

R Lum, M Meighan, H Alfaro , “Using neat to train a player for the iterated prisoner dilemma”, Machine Learning FALL, 2008.

L Browning, A Colman, “Evolution of coordinated alternating reciprocity in repeated dyadic games”, Journal of Theoretical Biology , pp. 549-557, 2004.

N. Minar, R. Burkhart, C. Langton, M Askenazi, “The swarm simulation system: A toolkit for building multi-agent simulations”, Working papers, Santa Fe Institute, 1996. [40]K. Cao, X. Feng, H Wan, “Applying agent-based modeling to the evolution of eco-industrial systems”, Ecological Economics, 2009.

T. Stockheim, M. Schwind, and W. Konig, “A model for the emergence and diffusion of software standards”, System Sciences, Proceedings of the 36th Annual Hawaii International Conference on, 2003.

C Triebig ,T. Credner,F. Kigl , P. Fischer ,T. Leskien , A. Deppisch ,S. Landvogt,”Simulating automatic high bay warehouses using agents”, Multi-Agent Systems and Applications IV, Lecture Notes in Computer Science, No. 3690, Springer Berlin Heidelberg, 2005, pp. 653-656.

O. Christoph, A. Hornlein, F. Klugl, “Evolutionary optimization of societies in simulated multiagent systems”, 2000.

S. Tisue and U. Wilensky, “NetLogo: a simple environment for modeling complexity”, 2004.

P. Blikstein, D. Abrahamson, U. Wilensky, “Netlogo: Where we are, where we’re going”, In Proceedings of the annual meeting of Interaction Design and Children, Press, 2005.

A. T. Crooks, “The repast simulation/modelling system for geospatial simulation”, 2007.

D. Koesrindartoto, Junjie Sun, and L. Tesfatsion, An agent-based computational laboratory for testing the economic reliability of wholesale power market designs, Power Engineering Society General Meeting, 2005. IEEE, june 2005, pp. 2818-2823 Vol. 3.

S. Widergren, J. Sun, and L. Tesfatsion, Market design test environments, Power Engineering Society General Meeting, 2006. IEEE, 0-0 2006, p. 6 pp.

K. Boer-Sorban K, “Agent-Based Simulation of Financial Markets: A Modular, Continuoustime Approach”, Doctoral Thesis, Erasmus Research Institute of Management (ERIM), 2008

E Klopfer, H. Scheintaub, “StarLogo TNG: science in student-programmed simulations”. In Proceedings of the 8th international conference on International conference for the learning sciences (ICLS’08), No. 3. International Society of the Learning Sciences 59-60, 2008.




DOI: https://doi.org/10.21501/21454086.763

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c)

 
Directora/Editora - Ingrid Durley Torres Pardo

ISSN (En línea): 2145-4086

DOI de la revista: https://doi.org/10.21501/issn.2145-4086

Universidad Católica Luis Amigó - Transversal 51A #67B 90. Medellín - Colombia.

 


 © 2019 Universidad Católica Luis Amigó

    

La revista y los textos individuales que en esta se divulgan están protegidos por las leyes de copyright y por los términos y condiciones de la Licencia Creative Commons Atribución-No Comercial-Sin Derivar 4.0 Internacional. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en http://www.funlam.edu.co/modules/fondoeditorial/

Derechos de autor. El autor o autores pueden tener derechos adicionales en sus artículos según lo establecido en la cesión por ellos firmada.

 

Se recomienda visualizar este contenido con los navegadores: Mozilla Firefox, Google Chrome, Safari.