Una revisión literaria del Problema de Carga del Pallet

Saúl Vargas-Osorio, Catya Zúñiga

Resumen


Actualmente, las empresas enfrentan una competencia agresiva, por lo que implementar estrategias para alcanzar la competitividad es elemental. En este sentido, en Logística, el uso adecuado de los recursos es imprescindible. El impacto en la ganancia que tienen el almacenaje y el transporte, conlleva la implementación de acciones para contrarrestarlo. Un paletizado efectivo puede contribuir a reducir costos. El Problema de Carga del Pallet (PLP) procura la optimización del espacio del pallet para lograr cargar máxima de producto debidamente empacado. El uso práctico y beneficios del PLP han dado pie a su estudio en la búsqueda su solución. Este artículo presenta una revisión literaria de 30 estudios para mostrar las características principales y los métodos de solución propuestos para proveer la base teórica y las maneras como se ha tratado el PLP. Con el entendimiento de estas propuestas de solución, se busca tener el sustento para elaborar un modelo nuevo.

Palabras clave


Logística; transporte; pallet; revisión literaria, Pallet Loading Problem.

Texto completo:

PDF

Referencias


Adel Mohammed Al-Shayea. “Solving the Three-Dimensional Palet-Paking Problem Using Mixed 0 - 1 Model”. Journal of Service Science and Management. Scientific Research, pp. 513–522, Apr. 2011. DOI: 10.4236/jssm.2011.44059

Alexander G. Tarnowski, Johannes Terno & Guntram Scheithauer. “A polynomial time algorithm for the guillotine Pallet Loading Problem”. INFOR 1994; 32 (4):275-887. [ONLINE] Disponible en: https://www.researchgate.net/publication/2308153_A_Polynomial_Time_Algorithm_for_the_Guillotine_Pallet_Loading_Problem

André R. S. Amaral & Mike Wright. “Experiments with a strategic oscillation algorithm for the pallet loading problem”. International Journal of Production Research, Vol. 39, Issue 11, pp. 2341-2351, 2001. DOI:10.1080/00207540110044589

Catya Zuñiga, Miquel Ángel Piera & Mercedes Narciso. “Revisiting the pallet loading problem using a discrete event system approach to minimise logistic costs”. International Journal of Production Research, Vol. 49, No. 8, pp. 2243–2264, Apr. 2011. DOI:10.1080/00207541003702234

Cintia A. Yamassaki & Vitória Pureza. “Um refinamento do algoritmo tabu de Dowsland para o problema de carregamento de paletes do produtor”. Production, Vol.13 No.3, pp. 1–14, 2003. DOI: 10.1590/S0103-65132003000300002

E. E. Bischoff & M. S. W. Ratcliff. “Loading multiple pallets“. The Journal of the Operational Research Society, Vol. 46, No. 11, pp. 1322-1336, Nov., 1995. DOI: 10.2307/2584567

E.E. Bischoff, F. Janetz & M.S.W. Ratcliff. “Loading pallets with non-identical items”. European Journal of Operational Research Vol. 84, ELSEVIER, pp. 681-692, 1995. DOI:10.1016/0377-2217(95)00031-K

EG Birgin, R Morabito & FH Nishihara. “A note on an L-approach for solving the manufacturer’s pallet loading problem”. Journal of the Operational Research Society, Vol. 56, pp. 1448–1451. 2005. DOI: 10.1057/palgrave.jors.2601960

Ernesto G. Birgin, Rafael D. Lobato & Reinaldo Morabito. “An effective recursive partitioning approach for the packing of identical rectangles in a rectangle”. Journal of the Operational Research Society, Vol. 61, pp. 306–320. 2010. DOI:10.1057/jors.2008.141

Ernesto G. Birgin, Rafael D. Lobato & Reinaldo Morabito. “Generating unconstrained two-dimensional non-guillotine cutting patterns by a recursive partitioning algorithm”. Journal of the Operational Research Society, Vol. 63, No. 2, pp. 183–200. 2012. DOI:10.1057/jors.2011.6

G. Abdou & M. Yang (1994). “A systematic approach for the three-dimensional palletization problem”. United Kingdom: Taylor & Francis. DOI: 10.1080/00207549408957074

G. Abdou & M. Elmasry. “3D random stacking of weakly heterogeneous palletization problems”. International Journal of Production Research, Vol. 37, No. 7, pp. 1505-1524. 1999. DOI: 10.1080/002075499191102

Glaydston Mattos Ribeiro & Luiz Antonio Nogueira Lorena. “Lagrangean relaxation with clusters and column generation for the manufacturer’s pallet loading problem”. Computers & Operations Research, Vol. 34, No. 9, pp. 2695–2708. 2007. DOI:10.1016/j.cor.2005.10.008

Gustavo H. A. Martins & Robert F. Dell. “Solving the pallet loading problem”. European Journal of Operational Research, ELSEVIER, Vol. 184, pp. 429–440. 2008. DOI:10.1016/j.ejor.2006.11.012

H. C. W. Lau, T. M. Chan, W. T. Tsui, G. T. S. Ho & K. L. Cho. “An AI approach for optimizing multi-pallet loading operations”. Expert Systems with Applications, Vol. 36, pp. 4296–4312. 2009. DOI: 10.1016/j.eswa.2008.03.024

Jiamin Liu, Xiaorui Zhanga & Yong Yueb. “Effectively Handling Three-Dimensional Spaces for Container Loading”. In Numerical Analysis and Applied Mathematics ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics, AIP Publishing, Vol. 1479, No. 1, pp. 1960-1963, Sept. 2012. [ONLINE] Disponible en: http://dx.doi.org/10.1063/1.4756569

Junmin Yia, Xing-Guang Chen & Jing Zhou. “The pinwheel pattern and its application to the manufacturer’s pallet-loading problem”. International Transactions in Operational. Research, Vol. 16, pp. 809–828. 2009. DOI: 10.1111/j.1475-3995.2009.00715.x

Kathryn A. Dowsland (A). “An exact algorithm for the pallet loading problem”. European Journal of Operational Research, Vol. 31, pp. 78-84. 1987. DOI:10.1016/0377-2217(87)90140-8

Kathryn A. Dowsland (B). “A Combined Data-base and Algorithmic Approach to the Pallet-Loading Problem”. The Journal of the Operational Research Society, Vol. 38, No. 4, pp. 341-345. Apr. 1987. DOI: 10.2307/2582058

Kevin Leyton-Brown, Holger H. Hoos, Frank Hutter & Lin Xu. “Understanding the empirical Hardness of NP-Complete Problems”. Communications of the ACM (Association for Computing Machinery), Vol. 57, No. 5, pp. 98-107. May 2014. DOI: 10.1145/2594413.2594424

Marwa Bouka. “Container transport: understanding the benefits of palletising”. Logistics & Transport Focus, pp. 36-37. March 2010. [ONLINE] Disponible en: http://web.b.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=9&sid=9b040668-06e4-402b-838a-646d40f565f8%40sessionmgr120&hid=124

R. Alvarez-Valdes, F. Parreño & J.M. Tamarit (A). “A branch-and-cut algorithm for the pallet loading problem”. Computers & Operations Research, Vol. 32, pp. 3007-3029, 2005. DOI: 10.1016/j.cor.2004.04.010

R. Alvarez-Valdes, F. Parreño & J.M. Tamarit (B). “A tabu search algorithm for the pallet loading problem”. OR Spectrum, Vol. 27, pp. 43-61. 2005. DOI: 10.1007/s00291-004-0183-5

Randal Farago & Reinaldo Morabito. “Um método heurístico baseado em relaxação lagrangiana para o problema de carregamento de paletes do produtor”. Pesquisa Operacional, Vol. 20, No. 2, pp. 197-212. 2000. [ONLINE] Disponible en: http://dx.doi.org/10.1590/S0101-74382000000200005

Reinaldo Morabito & Silvia Regina Morales. “A simple and effective recursive procedure for the manufacturer's pallet loading problem”. The Journal of the Operational Research Society, Vol. 49, No. 8, pp. 819-828. Aug., 1998. DOI: 10.2307/3009963

SungJin Lim, SeungNam Yu, ChangSoo Han & MaingKyu Kang. “Palletizing Simulator Using Optimized Pattern and Trajectory Generation Algorithm”. INTECH Open Access Publisher, pp. 281-300. March 2010. [ONLINE] Disponible en: http://cdn.intechweb.org/pdfs/10192.pdf

Teodor Gabriel Crainic, Guido Perboli & Roberto Tadei. “Extreme point-based Heuristics for three-dimensional Bin Packing”. INFORMS Journal on Computing, Vol. 20, No. 3, pp. 368–384, 2008. DOI:10.1287/ijoc.1070.0250

Tobias Fanslau & Andreas Bortfeldt. “A Tree Search Algorithm for Solving the Container Loading Problem”. INFORMS Journal on Computing, Vol. 22, No 2, pp. 222-235. 2010. [ONLINE] Disponible en: http://dx.doi.org/10.1287/ijoc.1090.0338

Vitória Pureza & Reinaldo Morabito. “Some experiments with a simple tabu search algorithm for the manufacturer’s pallet loading problem”. Computers & Operations Research, Vol. 33, pp. 804–819. 2006. DOI: 10.1016/j.cor.2004.08.009

Ya Liu, Chenbin Chu & Kanliang Wang. “A dynamic programming-based heuristic for the variable sized two-dimensional bin packing problem”. International Journal of Production Research, Vol. 49, No 13, pp. 3815-3831. 2011. DOI:10.1080/00207543.2010.501549

Young-Gun G. & Maing-Kyu Kang. “A fast algorithm for two-dimensional pallet loading problems of large size”. European Journal of Operational Research, Vol. 134, No 1, pp. 193-202. 2001. DOI: 10.1016/S0377-2217(00)00249-6

Books

Jerry Banks, John S. Carson II, David Nicol & Barry L. Nelson (2002). “Discrete-Event System Simulation”. United States of America: Prentice Hall.

Gabriel A. Wainer (2009). Discrete-Event Modeling and Simulation. United States of America: Taylor & Francis Group, LLC.

Technical Reports

Guntram Scheithauer & Johannes Terno. “A heuristic approach for solving the Multi-Pallet Packing Problem”. Technical Report, Dresden University. Dresden, Germany. 1996. [ONLINE] Disponible en: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.3988&rep=rep1&type=pdf

Dissertations

David Pisinger. “Algorithms for Knapsack Problems”. (1995). PhD thesis, University of Copenhagen, Dept. of Computer Science, Feb. 1995. [ONLINE] Disponible en: http://www.diku.dk/~pisinger/95-1.pdf

Jens Egeblad. “Heuristics for Multidimensional Packing Problems”. PhD thesis, University of Copenhagen, Department of Computer Science, Jul. 2008. [ONLINE] Disponible en: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.229.3169&rep=rep1&type=pdf

Published Papers from Conference Proceedings

K. C. Wu, C. J. Ting. "A Two-phase Algorithm for the Manufacturer’s Pallet Loading Problem”. IEEE International Conference on Industrial Engineering and Engineering Management. Singapore. pp. 1574-1578. 2-4 Dec. 2007. DOI: 10.1109/IEEM.2007.4419457

Vu T. Lel, Doug Creighton & Saeid Nahavandi. “A Heuristic Algorithm for Carton to Pallet Loading Problem”. INDIN'05, 3rd IEEE International Conference on Industrial Informatics, IEEE, pp. 593-598. 2005. DOI: 10.1109/INDIN.2005.1560443

Waldemar Kocjan & Kenneth Holmström. “Generating Stable Loading Patterns for Pallet Loading Problems”. In The Fifth International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems CPAIOR08. 2008. [ONLINE] Disponible en: https://contraintes.rocq.inria.fr/CPAIOR08/BPPC/bppc08_submission_2.pdf

Walter F. Mascarenhas. “Two aspects of the pallet loading problem”. Electronic Notes in Discrete Mathematics, Vol. 19, pp. 381–387. 2005. DOI: 10.1016/S0377-2217(99)00263-5

Ziao-Fung Ho, Lai-Soon Lee, Zanariah Abdul Majid and Hsin-Vonn Seow. “An Improved 〖GRM〗_OD Heuristic for Container Loading Problem”. In Internationa Conference on Mathematical Sciences and Statistics (ICMSS2013): Proceedings of the International Conference on Mathematical Sciences and Statistics, AIP Publishing, pp. 439-443. 2013. [ONLINE] Disponible en: http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4823952




DOI: https://doi.org/10.21501/21454086.1790

Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2016 Revista de Ingeniería "Lámpsakos"



 
Directora/Editora - Ingrid Durley Torres Pardo

Correo: lampsakos@amigo.edu.co

ISSN (En línea): 2145-4086

DOI de la revista: https://doi.org/10.21501/issn.2145-4086

Universidad Católica Luis Amigó - Transversal 51A #67B 90. Medellín - Colombia.

 


 © 2020 Universidad Católica Luis Amigó

    

La revista y los textos individuales que en esta se divulgan están protegidos por las leyes de copyright y por los términos y condiciones de la Licencia Creative Commons Atribución-No Comercial-Sin Derivar 4.0 Internacional. Permisos que vayan más allá de lo cubierto por esta licencia pueden encontrarse en https://www.funlam.edu.co/modules/fondoeditorial/

Derechos de autor. El autor o autores pueden tener derechos adicionales en sus artículos según lo establecido en la cesión por ellos firmada.

 

Se recomienda visualizar este contenido con los navegadores: Mozilla Firefox, Google Chrome, Safari.